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In this study, we show that there is a linear relationship between the concentration of glycerine in a sample and
T1, the sample’s thermal relaxation time under pulsed nuclear magnetic resonance (pNMR) imaging. Using
a .4T magnetic field, we performed measurements of T1 on mixtures of glycerin and water. As expected,
we found that T1 scaled linearly with the ratio of glycerine to water. The relationship between the two
variables—concentration of glycerine G and T1—is described by: T1 = 346.68 - 3.27G. Due to the linearity
of T1 with respect to the volume of glycerine, we conclude that the two substances, glycerine and water, are
negligibly reactive with each other and that the NMR technique is a promising method for testing the purity
of a glycerin solution.

I. INTRODUCTION

NMR is a widely used experimental technique to re-
cover nuclear information about an unknown or physi-
cally obscured sample. For instance, NMR is used by
chemists to determine the identity of an unknown com-
pound and by doctors to image the inside of the human
body. The physical principle behind NMR—the absorp-
tion of RF energy by a nucleus when in the presence of
a magnetic field—was first observed by Isidor Rabi in
19381. The technique was further developed in 1946 by
Edward Purcell2 and Felix Bloch3. Independently, Bloch
and Purcell refined the method used by Rabi so that they
could sample solids and liquids, as opposed to a molecular
beam that Rabi used as his sample. All three physicists
won the Nobel prize for their efforts, with Rabi winning
in 1944 and Purcell and Bloch winning jointly in 1952.

Use of pulsed NMR to measure viscosity of a liquid (for
which the concentration of glycerin is a close proxy), is
not a new idea. As early as 1961, Brown measured proton
relaxation times in crude oils and found a close correla-
tion between the viscosity of a crude oil and its relaxation
time4. In 1965, Ragozzino measured the effect of glyc-
erin concentration in water on relaxation time and found
an apparently strong correlation, although only four data
points were taken5. More recently, Lo et. al. measured
the relationship of viscosity, diffusivity and gas/oil ratio
to the relaxation times of methane and hydrocarbon mix-
tures. This has applications in petroleum engineering,
as the “Viscosity, diffusivity, relaxation time and gas/oil
ratio are important properties in the characterization of
reservoirs by NMR well logging and in prediction of pro-
duction performance.”6

In essence, the NMR technique allows researchers to
obtain information about the spin component of the sam-
ple material as well as information about the locations of
the nuclei inside it. While the spins of the component
nuclei take on discrete values, namely ± 1

2 , the aggregate
spin can take on an essentially continuous range of val-
ues. This net spin can be represented by a vector in
a three-dimensional space, the Bloch sphere, where the
magnitude indicates the level of coherence of the compo-
nent spins. By placing the sample in an external mag-

netic field, one can force this net-spin vector to precess
around the axis along which the field points (say ẑ), an
effect known as Larmor precession. Then, in applying a
carefully tuned RF pulse perpendicular to the external
field, the net-spin vector is tipped into the XY plane.
The frequency at which these spins are affected by this
technique, called the resonant frequency, is unique to the
composition of the sample; resonance occurs at different
frequencies for different nuclei.

After the spins have been tipped, one can measure the
projection of the net-spin vector into the XY plane using
a complicated apparatus which will be explained in sec-
tion two. At that point the work is almost done: the only
thing remaining is to observe the behavior of that pro-
jection, from which one can determine various properties
of the sample.

A. A more rigorous description of NMR

For simplicity, consider the behavior of a single particle
in an external field of strength B0. The field couples with
the spin of the particle according to the Hamiltonian

Ĥ = −γB · S = −γBzSz ẑ (1)

Where γ is the gyromagnetic ratio, and in the last step
we assume that the external field points in the ẑ direction.
According to Ehrenfest’s theorem

d〈S〉
dt

= γ〈S×B〉 (2)

After a bit of manipulation, we get

d2〈Sx〉
dt2

= −(γBz)
2〈Sx〉 (3)

We get a similar equation for Sy, and taken together,
the two equations describe precession of the spin around
ẑ with frequency γB0 (the resonant frequency).

Statistical mechanics tells us that if a sample is left in
this external field for long enough, almost all of its spins
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will have aligned with ẑ. In order to achieve the tipping
of the spins into the XY plane, one must apply an oscil-
lating pulse in the perpendicular direction, as mentioned
previously. The math behind this is a bit messy, but
illuminating.

The behavior of a single particle with wavefunction
Ψ(x, t) is determined by the Schrodinger equation

i}
dΨ

dt
= ĤΨ (4)

When we apply a perpendicular pulse, say, in x̂, our
Hamiltonian becomes

Ĥ = − }2

2m
∇2 − γBzSz + γBxcos(ωt)Sx (5)

The first term is the usual operator for kinetic energy
and the middle term is the coupling with static magnetic
field in ẑ from equation 1. The final term represents a
time oscillating pulse with frequency ω in x̂. Next, we
explicitly write Sx and Sz as matrix operators in the basis
of Sz eigenstates

Sx = −}
2

[
0 1
1 0

]
Sz = −}

2

[
1 0
0 −1

]
(6)

Finally, before we put everything together, let’s assume
that Ψ takes the form

Ψ(t) =

[
c1(t)
c2(t)

]
(7)

The Schrodinger equation now reads

i}
[
ċ1
ċ2

]
= −}

2

 }
m∇

2 + γBz γBxcos(ωt)

γBxcos(ωt)
}
m∇

2 + γBz

[c1c2
]

(8)

Now, to make the equation easier to solve and to make
the solution more physically meaningful, let’s transform
Ψ into the rotating frame. The transformation is

[
c1
c2

]
→
[
cr1e

iwt/2

cr2e
−iwt/2

]
(9)

Where cr1 and cr2 are the coefficients of the x and y
components, respectively, of Ψ in the frame of precession
around ẑ. In this new coordinate system, equation 8
looks like

i}

 (ċr1 + iwt
2 )eiwt/2

(ċr2 − iwt
2 )e−iwt/2

 =

−}
2

 }
m∇

2 + γBz γBxcos(ωt)

γBxcos(ωt)
}
m∇

2 + γBz


 cr1eiwt/2
cr2e

−iwt/2


(10)

We can solve this matrix equation to get two coupled
differential equations in cr1 and cr2. After solving them
and substituting Ψ back in, we get

i} |Ψ〉 = [−}
2

(γBz − ω)Sz − γBxSx] |Ψ〉 (11)

Remember that this is the solution for a person observ-
ing in the rotating frame; the direction of the net-spin
vector remains constant for them, even though it pre-
cesses around ẑ for a person observing from the labora-
tory frame. From equation 11, we can see that if ω, the
frequency of the oscillating magnetic field applied in x̂, is
the same as the resonant frequency with which the net-
spin vector precesses around ẑ, the Sz term goes away
and Ψ is acted on only by −γBxSx. To the observer in
the rotating frame, it appears that the sample is acted
upon by a static field in x̂, so the net-spin vector exhibits
Larmor precession around x̂. This is the tipping of the
spins for which we sought a mathematical explanation.
It turns out that all you have to do to rotate the spins
into the XY plane, where they can be measured, is apply
a magnetic field (perpendicular to the static field) that
oscillates at the sample’s resonant frequency. If the oscil-
lating field is applied for just the right duration of time,
one can control the angle that the spins tip into the XY
plane. In our experiment, we tipped the spins 90◦ (a “π2
pulse”) and 180◦ (a “π pulse”). Both of these pulse types
are shown in figure 1.

B. Relaxation times, free induction decay, and spin echoes

There are three additional features of NMR which are
of relevance to our experiment: relaxation times, free
induction decay, and spin echoes. When the spins are
tipped into the XY plane, as described in the previous
section, they don’t stay there indefinitely. Through a
variety of processes, the individual spins begin to deco-
here, resulting in a reduction of magnitude of the net-spin
vector. These processes are labeled according to their
characteristic relaxation times, T1, T2, and T2*. T2* is
the fastest decay process, characterizing the decoherence
of the spins due to the non-uniformity of Bz. T2 de-
cay is slower than T2* but faster than T1. It is caused
by dipole-dipole coupling of the various spins. T1 is the
slowest decay mechanism; it refers to the sample return-
ing to thermal equilibrium, in which all the spins point
along ẑ. T2* and T2 are visualized in panel (c), (d), and
(e) of figure 1.

Free induction decay (hereafter referred to as FID) is
the process by which a net-spin vector returns to ẑ af-
ter being tipped into the XY plane. Though T1, T2, and
T2* all contribute to this decay, T2* is dominant and thus
FID can often be characterized as a decaying exponential
e−t/T2∗. To reiterate, this function represents the mag-
nitude of the projection of the net-spin vector into the
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FIG. 1. In this diagram, we are in the frame of reference that rotates at the resonant frequency of the sample. a: The spins
initially point in ẑ b: A π

2
pulse tips the spins into the XY plane c: The spins decohere in the XY plane due to local variations

in the static magnetic field d: A π pulse inverts the spins in the XY plane e: The spins begin to re-cohere due to the same local
variations as in (c) f: The spins re-cohere completely and the net-spin vector experiences a resurgence in magnitude, which is
observed as a spin echo.

XY plane. If our oscillating pulse in x̂ is detuned from
the resonant frequency, we will observe decaying oscil-
lations, the frequency of which will be that of the beat
frequencies.

Although it can be quite frustrating for one to see their
nice coherent spins disappear so quickly, fear not, for the
method of spin echoes provides a way to re-cohere spins
for further measurement. T2* decay ensures that spins in
different locations in an inhomogeneous field will precess
at different rates. After the spins are initially tipped into
the XY plane, they decohere according to T2*. If a π
pulse is then applied (rotating the spins 180◦ around x̂),
then the spins, having been inverted in the XY plane,
will actually begin to “decohere” back together again.
This effect is made possible by the position-dependency
of T2*—should the spins be translated in space, rather
than rotated, they would not recohere at the same rate
that they each initially decohered, and they would remain
in an unobservable decoherent state. Spin echoes are
shown in panels (c) through (f) in figure 1.

Although we only measured T1 in this experiment, the
method of spin echoes allowed us to tune our apparatus
such that T2 and T2* effects did not interfere with our
measurement process.

II. METHODS

A. Preparation of the samples

Ten samples of glycerine were prepared for each trial,
with the concentration by volume of the samples rang-
ing from 100% to 45% in even increments of 5%. We
created the variable purity samples by mixing glycerine
with water in a graduated cylinder. For each sample, we

poured in the glycerine first, measured its volume, then
filled the graduated cylinder up with water until it was
10 mL full. We then stirred the solution vigorously until
it was properly mixed. Finally, we put five drops of the
sample into a small capsule which was inserted into our
NMR apparatus for measurement of T1.

B. Measuring the sample’s response to NMR

In order to measure T1 for our samples, we used the ex-
isting NMR apparatus built for Yale University in 2010.
A block diagram of the apparatus is shown in figure 2.
The diagram does not include, however, the large elec-
tromagnet that generates the static magnetic field, ref-
erenced in section 1.A. as Bz. In order to generate a
precisely timed pulse of an oscillating magnetic field, two
components are required: a precision pulse generator and
an oscillating magnetic field. For the latter, we used a
function generator outputting a 6.436356 MHz sine wave
with an amplitude of 3.25V peak-to-peak. Through cal-
culation and trial and error, we found this frequency to
be the resonant frequency of the sample, and this am-
plitude to generate the necessary Bx to tip the spins.
We then used computer controlled switches to shape this
wave into the precisely timed pulses needed to tip the
spins 90◦ and 180◦.

In order to deliver these pulses to the sample, we used
a small circuit containing some diodes, an inductor, a
λ/4 cable, and an LC filter. The sample is placed inside
the inductor, and as a pulse is passed through the induc-
tor, an oscillating magnetic field is produced across the
sample. The spins in the sample precess accordingly, and
in doing so generate a small back EMF in the inductor,
proportional to the spins’ projection into the XY plane.
This response signal is filtered out from the pulse via the
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FIG. 2. Determining T1 from the the sample’s response. a:
Initially, the spins are coherent along +ẑ b: A π pulse tips
them uniformly into −ẑ c: The individual spins begin to flip
back into +ẑ; the net-spin vector gradually decreases in mag-
nitude, still pointing along −ẑ d: At τ = T1

ln2
, half the spins

have flipped, meaning the net-spin vector is zero e: If a π
2

pulse is applied after (c), the net-spin vector will exhibit FID
f: If a π

2
pulse is applied after (d), the net-spin vector is zero

and thus no FID will be observed.

λ/4 cable and the LC filter. Once the response signal of
the sample has been isolated, it is amplified and sent to
the oscilloscope for measurement.

C. Determining T1 from the sample’s response

We found T1 for each sample using the method “inver-
sion recovery.” The pulse sequence for this method is

π −→ τ −→ π

2
(12)

Where τ is a variable amount of time that, when chosen
correctly, is related to T1 by the relationship

τ =
T1
ln(2)

(13)

Both equation 13 and the method of choosing the “cor-
rect τ” can be explained using the Bloch sphere. Let’s as-
sume the spins initially point along ẑ. After the π pulse,
the net-spin vector points along −ẑ, having been rotated
180◦ around x̂. As the spins start to decohere uniformly
due to T2 and T2*, they also undergo thermal relaxation
due to the T1 process. This results in the net-spin vector
receding along −ẑ, passing through zero, and then grow-
ing along +ẑ until it returns to its initial value. This
process is characterized by exponential decay e−t/T1 . By
applying a π

2 pulse after some time 0 < τ < T1, the net
spin vector is tipped into the XY plane where it under-
goes FID. If, however, τ = T1/ln(2), the net-spin vector
will have recessed exactly halfway between +ẑ and −ẑ,
meaning its magnitude will be zero. Therefore, a π

2 pulse
applied after this time will have no effect and no FID
will be measured. By sweeping through a range of τ
and picking out the one that results in no FID, T1 can
be determined through equation 13. The mechanics of
this process are shown in figure 2, while our use of this
technique to measure τ is shown in figure 3.

III. RESULTS

Figure 4 represents the variation of T1 with respect to
the concentration of the glycerine samples. We did two
trials, fitting to each the linear curve

T1 = T0 − αG (14)

where T0 is the value of T1 for a completely pure sample,
G is the concentration by volume of glycerine in the sam-
ples, and α is a constant of proportionality. The units on
T1, T0, and αG are milliseconds. The results of our two
trials are shown in the table below:

T0 (ms) δT0(ms) α (ms) δα (ms) χ2

Trial 1 348 ± 5 3.29 ± 0.06 0.464

Trial 2 345 ± 5 3.26 ± 0.08 0.749

Since the reduced chi-squared of trial two is much bet-
ter than that of trial one, we chose to present trial two
as our final data.

A. Discussion of error

We estimated our error in the concentration-by-volume
of the glycerine sample to be ± 2%. This came from the
fact that the graduated cylinder we were using to create
the samples had markings for every 0.2 mL. Since we
created 10 mL of each solution, an accuracy of 0.2 mL
translated to an accuracy of 2%. There were two sources
for the error in our measurement of T1: error due to
our estimation of which value of τ minimized the FID
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FIG. 3. Oscilloscope screenshots of the inversion recovery method of determining T1. Voltage is on the vertical axis (500 mV
per division) and time is on the horizontal axis (2.5 ms per division). In each screenshot, the π pulse can be seen as the large
vertical line on the left of the screen, and the π

2
pulse can be seen as the vertical line in the middle of the screen. In the left

and right screenshots, τ was slightly above and below the correct value of τ = T1/ln(2), so we observed a bit of FID after the
π
2

pulse. In the middle screenshot, the given τ ended up minimizing the FID response of the sample, meaning that that τ was
our best measurement for T1/ln(2) for the given sample.

FIG. 4. Variation of T1 with respect to the concentration of
the glycerine samples. The error bars on the horizontal axis
come from the degree of accuracy on the graduated cylinder
that we used to prepare our samples. To get our error on
the vertical axis, we added in quadrature the error in mea-
surement from the inversion recovery technique and the error
propagated through from our error in sample concentration.

response, and error propagated from our uncertainty in
the concentration of the glycerine samples. We estimated
a 2 ms uncertainty (on average) in the FID-minimizing
value of τ . This estimate is based on the level of noise
present in our measurement. When we were very close
(± 2 ms) to the correct value of τ , it was difficult to tell
which FID response was minimal. By far, the propagated
error from the glycerin concentration was the dominant
error, which we determined to be 7 ms (on average). The
formula we used for this propagation was

δy =

√
(∆y)2 + (

∂f

∂x
∆x)2 (15)

δy =
√

(∆y)2 + (−3.26× 2)2 (16)

Where ∆y is our uncertainty in the measurement of
τ (ranging between 0.5 ms to 3 ms depending on the
sample), f is our linear fit (T1 = 344.98−3.26G), x is the
concentration of glycerine G, and ∆x is our uncertainty
in G. On average, we found δy to be 7.5 ms.

The fact that our reduced chi-squared is lower than 1
indicates that our data is over-fit. Since we are using a
linear fit, and therefore can’t reduce the number of fitting
parameters any further, we deduced that our estimation
of the error was too large. However, we have no quan-
titative justification for lowering our estimation of the
error.

IV. CONCLUSION

The data presented here demonstrate that T1 is lin-
early proportional to the concentration of glycerine G
according to the relationship

T1 = 345− 3.26G (±5ms) (17)

Since the volume of the samples were held constant,
this type of relationship is characteristic of a mixture
where the component solutions are unreactive with each
other. If the glycerine had reacted with the water it was
mixed with, it would have created a new compound which
would have altered the T1 value for the sample (since
the nuclei would have been configured differently in the
created substance). The creation of this new substance
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would have led to a nonlinear relationship between G
and T1, so our observation of the relationship as linear
indicates that no new substance was created.

The fact that we were able to find a good (reduced
chi-squared close to 1) linear fit for our data indicates
that NMR is a good method for determining the con-
centration of glycerine in a sample containing unknown
amounts of glycerine and water. Our results in this ex-
periment are accurate to the extent that the sample of
glycerin used was pure, which could be an undetected
source of systematic error. While it is qualitatively very
clear that the concentration of glycerin and viscosity of
the liquid are tightly related, we have not investigated
the exact nature of the relationship (it may linear, for
example). This would be a necessary step in order to
determine more precisely the effectiveness of measuring
T1 relaxation times to determine the viscosity of a liquid
sample.
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Appendix A: Schematic of Experimental Apparatus
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FIG. 5. Schematic block diagram of our experimental apparatus. The electromagnets generating Bz are not shown. In logical
order: the function generator outputs a 6.436356 MHz sine wave with an amplitude of 3.25V peak-to-peak; the phase shifter
splits this into two signals, 90◦ offset from one another for reference; the non-phase-shifted signal is shaped into pulses by the
computer controlled switches; this pulse is amplified and delivered to the sample through the ”Magic box” and the probe;
the sample’s response is captured by the probe and sent through the preamplifier; the amplified signal is then mixed with the
reference signals from the phase shifter, amplified once again, and displayed on the oscilloscope for measurement.


